Wie gelingt es Unternehmen, die Potenziale der Digitalisierung zu nutzen und wettbewerbsfähig zu bleiben? Der Einsatz von Technologien wie Künstlicher Intelligenz kann dabei helfen, von der digitalen Transformation bestmöglich zu profitieren. Vor allem Maschinelles Lernen (ML) spielt in der Digitalisierungsstrategie vieler Unternehmen bereits eine große Rolle und ermöglicht unter anderem effizientere Prozesse sowie neue Geschäftsmodelle. Allerdings fehlt es oft an Fachkräften. So ist die Implementierung von ML-Lösungen bisher noch häufig mit hohem Arbeitsaufwand verbunden. Von der Datenakquisition über die Wahl der passenden Algorithmen bis hin zur Optimierung des Trainings ist ein detailliertes ML-Fachwissen notwendig.
Der Ansatz des automatisierten maschinellen Lernens (AutoML) wirkt diesen Herausforderungen entgegen und erleichtert den Einsatz von Künstlicher Intelligenz. Dabei wird insbesondere die Wahl der konkreten ML-Algorithmen automatisiert. Anwenderinnen und Anwender müssen somit weniger mit ML vertraut sein und können sich mehr auf ihre eigentlichen Prozesse konzentrieren.
In diesem Kontext verspricht die Innovation Quantencomputing, neue Lösungsansätze zu etablieren, die den AutoML-Ansatz signifikant verbessern. Zudem bietet Quantencomputing die für AutoML oftmals nötige Rechenleistung.
Neuer Ansatz: Quantencomputing bringt maschinelles Lernen auf neues Niveau
Das Verbundprojekt »AutoQML« setzte an dieser Innovation an und hat zwei wesentliche Ziele erreicht: Zum einen wurde der neue Ansatz AutoQML entwickelt. Dieser erweitert das AutoML-Prinzip um neu entwickelte Quanten-ML-Algorithmen. Zum anderen hebt Quantencomputing den AutoML-Ansatz auf ein neues Niveau, denn bestimmte Probleme lassen sich mithilfe von Quantencomputing effizienter und nachhaltiger lösen als mit konventionellen Algorithmen.
Unter Leitung des Fraunhofer-Instituts für Arbeitswirtschaft und Organisation IAO ermöglicht die entwickelte Open-Source-Software AutoQML Entwicklerinnen und Entwicklern nun einen vereinfachten Zugang zu konventionellen und Quanten-ML-Algorithmen. Die entwickelten Quanten-ML-Komponenten und Methoden wurden in Form eines Werkzeugkastens zusammengeführt und den Entwicklungsteams zur Verfügung gestellt. Dies befähigt Anwenderinnen und Anwender, maschinelles Lernen und Quanten-Machine-Learning einzusetzen und automatisierte hybride Gesamtlösungen entwickeln zu können.
Neben dem Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA beteiligten sich die Unternehmen GFT Integrated Systems, USU GmbH, IAV GmbH Ingenieursgesellschaft Auto und Verkehr, KEB Automation KG, Trumpf und die Zeppelin GmbH am Projekt. Die entwickelten Lösungen wurden anhand von konkreten Anwendungsfällen aus dem Automotive- und Produktionsbereich erprobt.